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1 Stochastic Discount Factor Process

Some preliminaries

Definition 1 (Stochastic Discount Factor Process). For a discrete time dynamic problem, the sequence of
random variables M1,M2, . . . is called a stochastic discount factor process if

1. Mt depends only on date−t information (often this is called Ft-measurable where Ft – filtration at time t)

2. For all i and t
MtPit = Et[Mt+1(Pi,t+1 +Dit)]

Definition 2 (Self-Financing Wealth Process). Given a portfolio process w such that w′ι = 1 the process defined
by

Wt+1 = Wt(w
′Rt+1)

starting from W0 ≥ 0 is called a self-financing wealth process

Self-Financing Wealth Process is a particular case of the intertemporal budget constraint

Wt+1 = Yt+1 + (Wt − Ct)(w′Rt+1)

where Yt+1 = Ct = 0

Definition 3 (Martingale Property). A stochastic process {Xt} is said to be a martingale if for all t

Xt = Et[Xt+1]

This is an important concept in finance since it defines a notion of fair game. If a gamble is a fair game you
don’t expect your wealth to go up or down. This is not directly applicable to asset markets since it goes up on
average. However, under a proper normalization wealth is going to be a martingale. Thus for any self-financing
wealth process we have

MtWt = Et[Mt+1Wt+1]

This follows from the definition of stochastic discount factor process in return form

Mt = Et[Mt+1Ri,t+1]
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stack these equations for all i to get
Mtι = Et[Mt+1Rt+1]

and multiply both sides by w′ and by Wt

MtWt(w
′ι) = Et[Mt+1Wt(w

′Rt+1)] =⇒ MtWt = Et[Mt+1Wt+1]

Valuation over Finite Horizons Using the definition of self-financing wealth process and iterating it forward

Wt = Et
[
Mt+1

Mt
Wt+1

]
= Et

[
Mt+1

Mt
Et+1

[
Mt+2

Mt+2
Wt+2

]]
= Et

[
Mt+2

Mt
Wt+2

]
= · · · = Et

[
MT

Mt
WT

]
for all T > t. This shows that the cost of getting WT at time T is given by Wt.

For non-self financing wealth processes this is a little bit more complicated and needs to be proven by
induction

Wt +

T∑
s=t+1

Et
[
Ms

Mt
Ys

]
=

T∑
s=t+1

Et
[
Ms

Mt
Cs

]
+ Et

[
MT

Mt
WT

]
First note that it holds for t = T as we left with only Wt = WT . Next, suppose that it is true for t =
τ + 1, τ + 2, . . . , T and let’s prove that it is true for t = τ . Multiply the intertemporal budget constraint by
Mt+1 and take expectations at time t:

Wt+1 = Yt+1 + (Wt − Ct)(w′Rt+1) =⇒ Et[Mt+1Wt+1] = Et[Mt+1Yt+1] + (Wt − Ct)w′Et[Mt+1Rt+1]

Use the definition of SDF process to substitute Et[Mt+1Rt+1] = Mtι

Et[Mt+1Wt+1] = Et[Mt+1Yt+1] + (Wt − Ct)w′Mtι

Et[Mt+1Wt+1] = Et[Mt+1Yt+1] + (Wt − Ct)Mt

Use the conjectured solution at time τ + 1 (premultiply it by Mτ+1)

Mτ+1Wτ+1 +

T∑
s=τ+2

Eτ+1 [MsYs] =

T∑
s=τ+2

Eτ+1 [MsCs] + Eτ+1 [MTWT ]

Mτ+1Wτ+1 = −
T∑

s=τ+2

Eτ+1 [MsYs] +

T∑
s=τ+2

Eτ+1 [MsCs] + Eτ+1 [MTWT ]

Plug this into the modified intertemporal budget constraint

Eτ [Mτ+1Wτ+1] = Eτ [Mτ+1Yτ+1] + (Wτ − Cτ )Mτ

Eτ

[
−

T∑
s=τ+2

Eτ+1 [MsYs] +

T∑
s=τ+2

Eτ+1 [MsCs] + Eτ+1 [MTWT ]

]
= Eτ [Mτ+1Yτ+1] + (Wτ − Cτ )Mτ

−
T∑

s=τ+2

Eτ [MsYs] +

T∑
s=τ+2

Eτ [MsCs] + Eτ [MTWT ] = Eτ [Mτ+1Yτ+1] + (Wτ − Cτ )Mτ

Rearrange this to obtain the result.

2 Dynamic Programming for Portfolio Choice

Define value function to be a function of two variables Vt(W,X) where W – wealth and X is a vector of
relevant state-variables that can for example influence returns. Dynamic programming only works in Markovian
settings, hence, the state vector X is a Markov process meaning that the distribution of Xt+1 conditional on
all information at date t is the same as conditional only on Xt. We assume that distribution of Yt+1 – labor
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income and Rt+1 – vector of returns on assets conditional on all information at date t is the same as conditional
on Xt.

If the agents maximizes the utility of terminal wealth Et[u(WT )], then his Bellman equation takes form

Vt(W,X) = max
w

E[Vt+1(Xt+1, Yt+1 +Ww′Rt+1)|Xt = X]

where the fact that the value function is indexed by time means that it can changes as there are fewer periods
left until the terminal period.

If there is an intermediate utility flow δtu(Ct) then Bellman equation becomes

Vt(W,X) = max
w,c

{
δtu(c) + E[Vt+1(Xt+1, Yt+1 +Ww′Rt+1)|Xt = X]

}
It is useful to normalize the value function by Vt → δ−tVt to get a more familiar representation

Vt(W,X) = max
w,c
{u(c) + δE[Vt+1(Xt+1, Yt+1 +Ww′Rt+1)|Xt = X]}

Inifinite Horizon If the horizon is infinite Bellman equation simplifies to

V (W,X) = max
w,c
{u(c) + δE[V (Xt+1, Yt+1 +Ww′Rt+1)|Xt = X]}

where V (·, ·) doesn’t depend on time anymore.

3 CRRA utility

When per period utility function is CRRA, value function is CRRA in wealth with the same coefficient of
relative risk aversion. In particular, value function Vt(W,X) takes the following form

Vt(W,X) = ft(X)W 1−γ

where ft(·) doesn’t depend on wealth. To see this in finite horizon case suppose use induction. For t = T we
have that the value function is equal to utility function

VT (W,X) =
C1−γ
T

1− γ
=
W 1−γ
T

1− γ
=⇒ fT (X) =

1

1− γ
Now suppose that the value function has the conjectured form for t+1, t+2, . . . , T . Then the Bellman equation
at period t is given by

Vt(W,X) = max
c,w
{u(c) + δE [Vt+1(Xt+1, (W − c)w′Rt+1)|Xt = X]}

= max
c,w

{
u(c) + δE

[
ft+1(Xt+1)((W − c)w′Rt+1)1−γ |Xt = X

]}
= [Denote z = c/W – consumption propensity]

= max
z,w

{
(zW )1−γ

1− γ
+ δE

[
ft+1(Xt+1)(W (1− z)w′Rt+1)1−γ |Xt = X

]}
= W 1−γ max

z,w

{
z1−γ

1− γ
+ δE

[
ft+1(Xt+1)((1− z)w′Rt+1)1−γ |Xt = X

]}
︸ ︷︷ ︸

ft(X)

which verifies the conjecture for the finite horizon problem. We can show using the same argument that for log
utility value function has the form

Vt(W,X) = αt log(W ) + gt(X)

When the horizon is infinite, we can show by the same argument that CRRA over wealth is one of the
solutions to the Bellman equation. In principle, there can be multiple solution to this Bellman equation.

Therefore, CRRA over wealth is indeed the unique solution to the Bellman equation and we have the following
expressions

V (W,X) = f(X)W 1−γ when γ 6= 1

V (W,X) = α log(W ) + g(X) when γ = 1
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4 CAPM, ICAPM and CCAPM

Here we derive approximate CCAPM and ICAPM and these approximations are exact in continuous time.
CCAPM says that the risk premium is determined by covariances with consummption. ICAPM says that
risk premium is determined by covariance with returns on wealth portfolio as well as on future investment
opportunities – state variables. The two models are not inconsistent: since optimal consumption depend on
wealth and state variables then covariance with wealth and state variables can be collapsed to covariance with
consumption.

4.1 Conditional CAPM

Conditional CAPM is the following statement

Et[Ri,t+1 −Rz,t+1] =
covt(Ri,t+1, Rm,t+1)

vart(Rm,t+1)
Et[Rm,t+1 −Rz,t+1]

where Rz,t+1 is a zero beta return which in the presence of risk free asset is just the risk free rate. Here we since
the zero beta rate is known in advance it doesn’t affect the covariance so we can omit it. Conditional CAPM
is useful to understand market timing strategies: increasing investment in the asset when the risk premium is
high. Contrast conditional CAPM with the traditional CAPM

E[Ri −Rz] =
cov(Ri −Rz, Rm −Rz)

var(Rm)
E[Rm −Rz]

First note that we have the zero beta rate inside the covariance since it is allowed to vary over the sample.
If the excess returns Ri − Rz and Rm − Rz are iid across time conditional and unconditional CAPM are

the same since conditioning on time t infromation doesn’t change any moments. Otherwise, the two models are
different. To see this denote the conditional CAPM beta for asset i at time t as βit. Then take the unconditional
expectation of the conditional CAPM

E[Ri,t+1 −Rz,t+1] = E[βitEt[Rm,t+1 −Rz,t+1]]

= E[βit]E[Rm,t+1 −Rz,t+1] + cov (βit,Et[Rm,t+1 −Rz,t+1])

To see how the covariance term is related to market timing consider the following example of a market timing
strategy

Example 4.1 (Condional CAPM and Market Timing). Suppose that the market return is given by Rm,t+1 =
µt + εt+1. Suppose that µt = Rf −∆ or µt = Rf + ∆ with equal probability. Consider a strategy that invests
100% in the risk free asset when µt = Rf −∆ and 100% in the market when µt = Rf + ∆. Denote the return
of this strategy as Rt.

Consider the elements of unconditional CAPM. The unconditional expected market return is 0.5(Rf + ∆) +
0.5(Rf −∆) = Rf . The unconditional CAPM then says that all unconditional returns should equal to the risk
free rate. However, the unconditional expected return of this strategy is

E[Rt] = 0.5Rf︸ ︷︷ ︸
when µt = Rf −∆

+ 0.5(Rf + ∆)︸ ︷︷ ︸
when µt = Rf −∆

= Rf +
1

2
∆ > Rf

which is higher than the unconditional expected return predicted by unconditional CAPM. The discrepancy comes
from the covariance term: when expected market return is low the beta of this strategy is 0 and when expected
market return is high the beta of this strategy is 1.

4.2 Consumption CAPM

Consumption CAPM states the risk premium of the asset is determined by covariances with aggregate con-
sumption growth. Here to derive it we use a Taylor approximation that is exact in continuous time. The first
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step is to use the SDF formula for the expected return on any asset:

1 = Et[Zt+1Ri,t+1]

1 = Et[Zt+1]Et[Ri,t+1] + covt(Zt+1, Ri,t+1)

Et[Ri,t+1] =
1

EtZt+1
− 1

EtZt+1
covt(Zt+1, Ri,t+1)

where Zt+1 – one period SDF. Use investor’s MRS as one period SDF: Zt+1 = β u
′(Ct+1)
u′(Ct)

Et[Ri,t+1] =
u′(Ct)

βEtu′(Ct+1)
− u′(Ct)

βEtu′(Ct+1)
covt

(
β
u′(Ct+1)

u(ct)
, Ri,t+1

)
=

u′(Ct)

βEtu′(Ct+1)
− 1

Etu′(Ct+1)
covt (u′(Ct+1), Ri,t+1)

In principle, we can assume the existence of a representative investors and this equation will be valid for
aggregate consumption. We can also take another route that will require approximation that becomes exact in
continuous time. Suppose that time periods are small so that we can approximate

u′(Ct+1) ≈ u′(Ct) + u′′(Ct)(Ct+1 − Ct)
= u′(Ct) + u′′(Ct)∆Ct+1

reasonably well. Plug this back into the expression for expected return on asset i

Et[Ri,t+1] =
u′(Ct)

βEtu′(Ct+1)
− 1

Etu′(Ct+1)
covt (u′(Ct) + u′′(Ct)∆Ct+1, Ri,t+1)

=
u′(Ct)

βEtu′(Ct+1)
− u′′(Ct)

Etu′(Ct+1)
covt (∆Ct+1, Ri,t+1)

=
u′(Ct)

βEtu′(Ct+1)
− Ct

u′′(Ct)

Etu′(Ct+1)
covt

(
∆Ct+1

Ct
, Ri,t+1

)
In continuous time the following approximation is exact

Ct
u′′(Ct)

Etu′(Ct+1)
≈ Ctu

′(Ct)

u′′(Ct)

hence, we have

Et[Ri,t+1]− u′(Ct)

βEtu′(Ct+1)︸ ︷︷ ︸
zero-beta return

= −Ctu
′′(Ct)

u′(Ct)︸ ︷︷ ︸
Relative-Risk Aversion

covt

(
∆Ct+1

Ct
, Ri,t+1

)

Consumption CAPM says that risk-premium (expected asset return over the zero beta return) depends on the
covariance of return with aggregate consumption growth and the price of this risk in the representative investor’s
relative risk aversion.

We can also proceed without assuming a representative investor. Suppose that each investor has utility
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uh(Cht) and sum the previous equation across agents

Et[Ri,t+1] =
u′h(Cht)

βEtu′h(Ch,t+1)
− u′′h(Cht)

Etu′h(Ch,t+1)
covt (∆Ch,t+1, Ri,t+1)

Etu′h(Ch,t+1)

u′′h(Cht)
Et[Ri,t+1] =

u′h(Cht)

βu′′h(Cht)
− covt (∆Ch,t+1, Ri,t+1)∑

h

Etu′h(Ch,t+1)

u′′h(Cht)
Et[Ri,t+1] =

∑
h

u′h(Cht)

βu′′h(Cht)
− covt (∆Ct+1, Ri,t+1)

Et[Ri,t+1] =

[∑
h

Etu′h(Ch,t+1)

u′′h(Cht)

]−1∑
h

u′h(Cht)

βu′′h(Cht)︸ ︷︷ ︸
Rz,t+1

−

[∑
h

Etu′h(Ch,t+1)

u′′h(Cht)

]−1

covt (∆Ct+1, Ri,t+1)

Et[Ri,t+1] = Rz,t+1 +

[
Ct/

∑
h

−Etu′h(Ch,t+1)

u′′h(Cht)

]
︸ ︷︷ ︸

Γ

covt

(
∆Ct+1

Ct
, Ri,t+1

)

Price of risk (the ugly thing that multiplies the covariance term) is consumption multiplied by the aggregate
absolute risk aversion Aagg that is defined as follows

1

Aagg
=
∑
h

1

Ah
where Ah = − u′′h(Cht)

Etu′h(Ch,t+1)
≈ − u′′h(Cht)

u′h(Ch,t+1)

so that
Γ = CtA

agg

Since relative risk aversion is absolute risk aversion multiplied by consumption, we can think about Γ as aggregate
relative risk aversion.

4.3 Intertemporal CAPM

Intertemporal CAPM provides a theoretical foundation for macroeconomic variables to be priced risk factors. If
such factors affect investment opportuinities ICAPM says that they are priced risk factors and command a risk
premium. Since we can replace any factors with their projections on returns or excess returns we can extend
this approach to returns. If we find that some returns or excess returns are priced risk factors, then it is at least
theoretically possible that they work because they are projections of macroeconomic variables.

To understand this logic it is useful to work with the dynamic programming approach interoduced earlier as
the macroeconomic variables will affect state Xt that affects the value function. We start with the same formula
for the risk premium on an asset

Et[Ri,t+1] =
u′(Ct)

βEtu′(Ct+1)
− 1

Etu′(Ct+1)
covt (u′(Ct+1), Ri,t+1)

and going to work with the following infinite horizon Bellman equation

V (W,X) = max
w,c
{u(c) + δE[V (Xt+1, Yt+1 +Ww′Rt+1)|Xt = X]}

Instead of approximating marginal utility around the time-t consumption we are going to use the envelope
theorem

VW (X,W ) = u′(c)

to substitute marginal utility out of this equation. We get

Et[Ri,t+1] =
VW (Xt,Wt)

βEtVW (Xt+1,Wt+1)
− 1

EtVW (Xt+1,Wt+1)
covt (VW (Xt+1,Wt+1), Ri,t+1)
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Next, we do a Taylor expansion of marginal value of wealth VW (Xt+1,Wt+1) around Xt – time-t state variables
(recall that X is a vector) and Wt − Ct – funds at time−t allocated to investments. The approximation is the
following

VW (Xt+1,Wt+1) = VW (Xt,Wt − Ct) +

K∑
i=1

VWXi
(Xt,Wt − Ct)∆Xi,t+1 + VWW (Xt,Wt − Ct)(Wt+1 − (Wt − Ct))

= VW (Xt,Wt − Ct) +

K∑
i=1

VWXi
(Xt,Wt − Ct)∆Xi,t+1 + VWW (Xt,Wt − Ct)(∆Wt+1 + Ct)

Plug the approximation of VW (Xt+1,Wt+1) into the expression for risk-premium from above

Et[Ri,t+1] =
VW (Xt,Wt)

βEtVW (Xt+1,Wt+1)
− 1

EtVW (Xt+1,Wt+1)
covt (VW (Xt+1,Wt+1), Ri,t+1)

≈ VW (Xt,Wt)

βEtVW (Xt+1,Wt+1)

− 1

EtVW (Xt+1,Wt+1)
covt

(
K∑
i=1

VWXi(Xt,Wt − Ct)∆Xi,t+1 + VWW (Xt,Wt − Ct)(∆Wt+1 + Ct), Ri,t+1

)

=
VW (Xt,Wt)

βEtVW (Xt+1,Wt+1)

−
K∑
j=1

Xj,tVWXj
(Xt,Wt − Ct)

EtVW (Xt+1,Wt+1)
cov

(
∆Xj,t+1

Xjt
, Ri,t+1

)

− (Wt − Ct)VWW (Xt,Wt − Ct)
EtVW (Xt+1,Wt+1)

covt

(
∆Wt+1 + Ct
Wt − Ct

, Ri,t+1

)
Recall that the intertemporal budget constraint is

Wt+1 = Yt+1 + (Wt − Ct)w′Rt+1

=⇒ ∆Wt+1 + Ct
Wt − Ct

=
Yt+1 + (Wt − Ct)w′Rt+1 −Wt + Ct

Wt − Ct

= w′Rt+1 − 1 +
Yt+1

Wt − Ct
Hence, the fully expanded expression for ICAPM is

Et[Ri,t+1] ≈ VW (Xt,Wt)

βEtVW (Xt+1,Wt+1)

−
K∑
j=1

Xj,tVWXj
(Xt,Wt − Ct)

EtVW (Xt+1,Wt+1)
cov

(
∆Xj,t+1

Xjt
, Ri,t+1

)
− (Wt − Ct)VWW (Xt,Wt − Ct)

EtVW (Xt+1,Wt+1)
covt (w′Rt+1, Ri,t+1)

− (Wt − Ct)VWW (Xt,Wt − Ct)
EtVW (Xt+1,Wt+1)

covt

(
Yt+1

Wt − Ct
, Ri,t+1

)
Interpretation There are many terms to deal with

1. First, consider the price of risk for the covariance covt(w
′Rt+1, Ri,t+1). If we use approximation Et[VW (Xt+1,Wt+1)] ≈

VW (Xt,Wt − Ct) then

− (Wt − Ct)VWW (Xt,Wt − Ct)
EtVW (Xt+1,Wt+1)

≈ − (Wt − Ct)VWW (Xt,Wt − Ct)
VW (Xt,Wt − Ct)

is the relative risk aversion of a representative investor’s value function. Recall that when we deal with
CRRA utility function, value function inherit the same risk aversion coefficient. Hence, with CRRA utility
this term is approximately γ.
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2. Next, consider the price of risk for covariances with the state variable covt(∆Xj,t+1/Xjt, Ri,t+1). Using
the same approximation we can write it as

−
Xj,tVWXj

(Xt,Wt − Ct)
EtVW (Xt+1,Wt+1)

≈ −
Xj,tVWXj

(Xt,Wt − Ct)
VW (Xt,Wt − Ct))

= − ∂ log VW (X,W )

∂ logX

∣∣∣∣
X=Xt,W=Wt−Ct

Hence, it is the elasticity of the marginal value of wealth with respect to the state variable Xj . What
does it mean? To get a better understanding let’s focus on a particular case of CRRA per-period utility
function and no labor income. As we know the value function inherits the same coefficient of relative risk
aversion

V (W,X) = f(X)W 1−γ when γ 6= 1

V (W,X) = α log(W ) + g(X) when γ = 1

Marginal value of wealth is

VW (W,X) = (1− γ)f(X)W−γ when γ 6= 1

VW (W,X) = αW−1 when γ = 1

and its derivative w.r.t. state variable Xj

VWXj
(W,X) = (1− γ)W−γ

∂f(X)

Xj
when γ 6= 1

VWXj (W,X) = 0 when γ = 1

and derivative of value function w.r.t state Xj is

VXj (W,X) = W 1−γ ∂f(X)

Xj
when γ 6= 1

VXj
(W,X) =

∂g(X)

∂Xj
when γ = 1

Hence, the ratio of the marginal value of wealth and the value function w.r.t. state Xj is

VWXj
(W,X)

VXj
(W,X)

=
1− γ
W

when γ 6= 1

VWXj (W,X)

VXj
(W,X)

= 0 when γ = 1

We have the following observations

• When γ = 1 marginal value of wealth doesn’t respond to changes in state variables. This is the case
of the absence of intertemporal hedging demand: changes in investment opportunities don’t affect
portfolio allocation of a log-investor. Therfore, for such investor the price of return-state-covariance
risk is zero.

• When γ < 1, marginal value of wealth and value function move in the same direction with state
variables. Suppose that Xj is state variables increases of which mean ”good times” in a sense of good
investment opportunities. Xj ↑ increases the value function of any investor. However, when γ < 1,
i.e. the investor is very aggressive this also corresponds to increase in marginal value of wealth. When
there are better investment opportunities an aggressive investor wants more wealth to invest more
during such times. In the opposite case, when Xj ↓ investment opportunities deteriorate meaning
that the value goes down, but marginal value of wealth goes down because aggressive investor doesn’t
want to invest in times of bad investment opportuinities. This is the case of negative intertemporal
hedging demand. Hence, for such aggressive investor the price of return-state-covariance risk is
negative, meaning that this investor values assets that go up when future investment opportunities
improve and (weirdly) values assets that go down when future investment opportunities deteriorate.
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• When γ > 1 marginal value of wealth and value of wealth move in the opposite direction with states.
In line with the previous argument, when the future opportunities deteriorate and the value function
goes down, the marginal value of wealth goes up. Therefore, for such investor the price of return-
state-covariance risk is positive meaning that this investor values assets that perform well when
future investment opportuinities deteriorate. This is the case of positive intertemporal hedging
demand.

3. Lastly, we have covariance covt(Yt+1, Ri,t+1) which is straightforward: the price of this return-labor-
income-covariance-risk is positive since VWW ≤ 0. Therefore, the investor values assets that performs
well when labor income goes down.
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