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1 Introduction

In this chapter we are going to look at the portfolio choice problem of a long-term investor and ask a question:
under what conditions does the allocation of a long term investor differs compared to the allocation of a myopic
investor? We will use the intertemporal CAPM derived in chapter 9 that says that the SDF of an investor is

m̃t+1 = −γrw,t+1 − (γ − 1) (Et+1 − Et)
∞∑
j=1

rw,t+1+j︸ ︷︷ ︸
h̃t+1

so that the risk premium is

Etri,t+1 − rf,t+1 +
σ2
i

2
= −σimt = γσiwt + (γ − 1)σiht

This formula actually doesn’t require Epstein-Zin preferences and it is still valid (up to approximation) with a
power utility. We can see that since there is nothing preventing us from setting γ = 1/ψ to get to the case of
power utility.

2 Myopic Portfolio Choice

Definition 1 (Myopic Portoflio Choice). At a given point in time, investor has the same optimal portfolio
regardless of investment horizon. Note that this doesn’t mean that his optimal portfolio is constant over time.

We’re going to look at several examples where portoflio choice is myopic

1



Power Utility with γ = 1 Suppose that such investor maximizes wealth after two periods. He solves

max
p

Et
W 1−γ
t+2

1− γ
=⇒ max

p
logEt

W 1−γ
t+2

1− γ

=⇒ max
p

Et log(W 1−γ
t+2 ) +

1

2
vart(log(W 1−γ

t+2 ))

=⇒ max
p

(1− γ)Etwt+2 +
(1− γ)2

2
vart(wt+2)

=⇒ max
p

Etwt+2 +
1− γ

2
vart(wt+2)

=⇒ max
p

Etrp,t→t+2 +
1− γ

2
vart(rp,t→t+2)

where we used log budget constraint without consumption Wt(1 +Rp,t→t+2) = Wt+2 =⇒ wt + rp,t+2 = wt+2.
Log utility has γ = 1 so that the problem becomes

max
p

Etrp,t→t+2 = max
p

Etrp,t+1 + Etrp,t+2

Given that the investor can rebalance portfolio weight at time t impact only the term Etrp,t+1. Therefore, at
time t such investor maximizes Etrp,t+1 which is the same objective function as for log investor that invests for
1 period only.

Independent Returns Over Time When returns are independently distributed over time (but no neces-
sarily identically) we can show that the portfolio choice is myopic over time. The argument is with backward
induction. With power utility the value function takes form

Vt = χtW
1−γ
t

where χt is the scale factor that reflects investment opportunities (state variables). Hence, at the last period
T − 1 the agent solve one period problem. At period T − 2 he maximizes a function of wealth at period T − 1
and so on. Since the returns are independent over time state variables are independent of decision made in
previous periods. If moreover, the returns are identically distributed over time, the portfolio choice is constant.

To see how this works consider a power utility investor that faces iid lognormal return and maximizes his
wealth in two periods. His problem is (from previous calculations)

max
p

rp,t,t+2 +
1

2
vart(rp,t,t+2)︸ ︷︷ ︸

average simple return

−γ
2
vart(rp,t,t+2)

we can use the return approximation from chapter two rp,t+1 − rf,t+1 = αt(rt+1 − rf,t+1) + 1
2αt(1− αt)σ

2 and
applying it for two periods

rp,t,t+2 − 2rf = (rp,t+1 − rf ) + (rp,t+2 − rf )

= αt(rt+1 − rf ) + αt+1(rt+1 − rf ) +
1

2
αt(1− αt)σ2 +

1

2
αt+1(1− αt+1)σ2

vart(rp,t,t+2) = (α2
t + α2

t+1)σ2

Mean simple return in this case

Etrp,t,t+2 +
1

2
vart(rp,t,t+2) = 2rf + (αt + αt+1)

[
Er − rf +

1

2
σ2

]
Average simple return depends only on the sum of (αt + αt+1. The whole problem becomes

max
αt,αt+1

rp,t,t+2 +
1

2
vart(rp,t,t+2)− γ

2
vart(rp,t,t+2) = 2rf + (αt + αt+1)

[
Er − rf +

1

2
σ2

]
+ (α2

t + α2
t+1)σ2

which is solved at αt = αt+1
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3 Intertemporal Hedging

Consider a power utility investor maximizing his wealth in K periods and lognormal return not necessarily
independently nor identically ditributed over time. Use this investor’s problem from the previous part

max
αt

Etrp,K,t+K +
1

2
(1− γ)vart(rp,K,t+K)

= max
αt

Et[rp,t+1] +
1

2
(1− γ)vart(rp,t+1) + [Etrp,K,t+K − Et[rp,t+1]] +

1− γ
2

[vart(rp,K,t+K)− vart(rp,t+1)]

We can decompose K period return into rp,K,t+K = rp,t+1 + rp,K−1,t+K and plug this into the problem above

max
αt

Et[rp,t+1] +
1

2
(1− γ)vart(rp,t+1) + Etrp,K−1,t+K +

1− γ
2

[vart(rp,t+1 + rp,K−1,t+K)− vart(rp,t+1)]

max
αt

Et[rp,t+1] +
1

2
(1− γ)vart(rp,t+1) + Etrp,K−1,t+K +

1− γ
2

[vart(rp,K−1,t+K) + 2covt(rp,t+1, rp,K−1,t+K))]

when we allow for rebalancing we have that both Etrp,K−1,t+K and vart(rp,K−1,t+K) are unaffected by the
choice of αt. Hence, we can write the problem as

max
αt

Et[rp,t+1] +
1

2
(1− γ)vart(rp,t+1) + (1− γ)covt(rp,t+1, rp,K−1,t+K))

subtract rf,t+1 that is knows in advance and, therefore, doesn’t affect the optimal choice and use return ap-
proximation from chapter 2

max
αt

[Etrp,t+1 − rf,t+1] +
1

2
(1− γ)vart(rp,t+1) + (1− γ)covt(rp,t+1, rp,K−1,t+K))

max
αt

αt(Etrt+1 − rf,t+1) +
1

2
αt(1− αt)σ2

t +
1

2
(1− γ)α2

tσ
2
t + (1− γ)covt(rp,t+1, rp,K−1,t+K)

First order condition of this problem is

0 = αt(Etrt+1 − rf,t+1) +
1

2
αt(1− αt)σ2

t +
1

2
(1− γ)α2

tσ
2
t + (1− γ)covt(rp,t+1, rp,K−1,t+K)

= (Etrt+1 − rf,t+1) +
1

2
(1− 2αt)σ

2
t + (1− γ)αtσ

2
t + (1− γ)

d

dαt
covt(rp,t+1, rp,K−1,t+K)

=⇒ γαtσ
2
t = Etrt+1 − rf,t+1 +

1

2
σ2
t + (1− γ)

d

dαt
covt(rp,t+1, rp,K−1,t+K)

=⇒ αt =
Etrt+1 − rf,t+1 + 1

2σ
2
t

γσ2
t︸ ︷︷ ︸

standard term from chapter 2

− γ − 1

γσ2
t

· d

dαt
covt(rp,t+1, rp,K−1,t+K)︸ ︷︷ ︸

intertemporal hedging term

(1)

To understand this suppose that investment opportuinities in at period t+ 1 ( expectation of returns going
forward) are positively correlated with return at time t+ 1. This means that the agent has more wealth when
investment opp. are good going forward and less wealth when investment opp. are bad going forward. This
increases the volatility of two periods return. In this case, d

dαt
covt ∝ αt. This is penalized by a conservative

investor with γ > 1 so that the asset weight of risky asset is lower in equation (1).

3.1 Hedging Interest Rates

Here we consider an agent with EZ utility and inifinite horizon. Unlike in consumption CAPM, here returns are
given and we are trying to figure out what does it mean for the optimal allocation. First consider changing
interest rates, constant risk premia and constant second and higher moments of returns. The
first order condition for the EZ utility function from equation (??) where we replace the wealth portoflio with
portfolio of the agent as the relevant covariance term

Etri,t+1 − rf,t+1 +
σ2
i

2
= γcovt(ri,t+1, rp,t+1) + (γ − 1)covt

ri,t+1, (Et+1 − Et)
∞∑
j=1

ρjrp,t+1+j
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Under constant risk premium ri,t+1 = rf,t+1 + rp all assets move in parallel with the risk free rate so that
innovations in asset return are only due innovations in risk free rate

(Et+1 − Et)
∞∑
j=1

ρjrp,t+1+j = (Et+1 − Et)
∞∑
j=1

ρjrf,t+1+j

Now plug this into the FOC from above

Etri,t+1 − rf,t+1 +
σ2
i

2
= γcovt(ri,t+1, rp,t+1) + (γ − 1)covt

ri,t+1, (Et+1 − Et)
∞∑
j=1

ρjrf,t+1+j


and consider a simple case with only 1 risky asset when covariance with the portfolio smplifies to

covt(ri,t+1, rp,t+1) = covt(ri,t+1, αtrp,t+1) = αtσ
2

Then the FOC becomes

Etri,t+1 − rf,t+1 +
σ2
i

2
= γαtσ

2 + (γ − 1)covt

ri,t+1, (Et+1 − Et)
∞∑
j=1

ρjrf,t+1+j


Optimal risky asset allocation is then

αt =
1

γ

Etri,t+1 − rf,t+1 +
σ2
i

2

σ2︸ ︷︷ ︸
Myopic Portfolio Demand

+

(
1− 1

γ

)
1

σ2
covt

ri,t+1,−(Et+1 − Et)
∞∑
j=1

ρjrf,t+1+j


︸ ︷︷ ︸

Interest Rate Hedging Term

Note that the two terms are weighted by 1
γ and 1− 1

γ . As γ increases and the investor becomes more risk averse
the second term dominates. COnsider the case of an infinitely risk-averse investor with γ → ∞. In this case
the optimal allocation is

αt =
1

σ2
covt

ri,t+1,−(Et+1 − Et)
∞∑
j=1

ρjrf,t+1+j


Inifnitely risk averse investor wants to invest in assets that perform well when future interest rates go down.
Real perpetuities that go down in price when future interest rates go up offer such a product for this investor.
Notice that in the 1 period horizon problem the optimal allocation of an infinitely risk averse investor was
to invest zero in the risky asset and everything in the short term treasury. This is no longer the case for an
infinitely lived agent as we just saw.

Application to the Asset Allocation Puzzle Financial advisors were recommending conservative investors
to allocate higher share of their wealth into risky nominal bonds. This was seen as the violation of the Mutual
Funds theorem that suggests the same risky asset allocations. However, from the perspective of the model that
we just covered, bonds can offer a hedge against declines in interest rates and, therefore, may be preferred by
conservative investors. Campbell and Viceira (2001) show that fr historical subsample where interest rates are
persistent, the optimal portfolio for agents with high γ is indeed to invest a large fraction of wealth into bonds.

3.2 Hedging Risk Premia

Suppose now that the risk free rate is constant and there is a single risky asset with return rt+1 such that

Unexpected Change: rt+1 − Etrt+1 = ut =⇒ rt+1 = Etrt+1 + ut+1

Risk Premium: Etrt+1 − rf +
σ2

2
= xt

Process for RP: xt+1 = µ+ φ(xt − µ) + ηt+1

σuη < 0
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So that the risk premium is mean reverting to µ. When σuη < 0 it means that when current return is high,
risk premium moves down on average so that the future returns are low. Therefore, on average high returns are
followed by low returns =⇒ mean-reversion in returns.

We don’t solve the model in the textbook, just assume that the risky asset share is affine in risk premium
αt = ao + a1xt and that the value function take the following form Vt = exp(b0 + b1xt + b2x

2
t ). The coefficients

b0, b1 and b2 turn out to be in such a way so that the value function as a function for xt looks like this

• When µ = 0 the inconditional risk premium is equal to zero. It means that the worst place to be in terms
of the value function is exactly when xt = 0. This is because when xt = 0 you can’t profitably long or
short. Moreover, you expect to stay at xt = 0

• When µ > 0 meaning that the unconditional risk premium is greater than zero, the worst place to be
in terms of the value function is when xt < 0. To see why consider the following experiment. Suppose
that you are located in the minimum point of the value function on the right figure. You are expected to
trend upward which means that you are going to spend a lot of time around xt = 0. In xt ≈ 0 you can’t
profitably long or short the risk asset. However, if you start from xt = 0 you trend upward and, therefore,
will spend only a little time arond xt = 0

Now we consider what are the slopes and the intercepts of the portfolio allocation rule αt = a0 + a1xt as a
function of risk premium.

• Intercept a0. When µ = 0 then a0 = 0. Then when xt = 0 agent holds zero share of the risky asset
because he can’t profitably long or short it and he is not expecting to go anywhere. However, it is not
the case when µ > 0 and σuη – innovations to asset return and risk premium are negatively correlated. In
fact an investor will have a0 > 0 meaning that even when xt = 0 he will hold positive share of the risky
asset. This was impossible in the case of one periods investment. Why is it the case? Suppose that you
are sitting at xt = 0 (look at the right figure from above). As was discussed previously, it is bad for the
agent to be in xt < 0. Therfore, the agent wants to hedge the possibility that the risk premium go down.
In the case when σuη < 0 the risky asset goes up whenever risk premium goes down. Therefore, he holds
the risky asset even if xt = 0 as it provides a natural hedge against a declining risk premium

• Slope a1 Under γ > 1 and σuη < 0 the slope is higher than that of the myopic investor. Long-term
investors time the market more aggressively than short term investors. This happens because stocks in
this setting offer a hedge against a declining risk premium.

Empirical Estimation from a VAR model

• There is a mean reversion in in both bond and stock returns, but the risk of investing in treasury bills is
increasing with horizon because of uncertainty about the rate a which it can be rolled over.

• Portfolio rule for for stocks features a hump shaped intertemporal hedging demand in risk tolerance (1/γ).
It first increases as γ ↑ and then goes down:

– Log-utility investors don’t have a intertemporal hedgind demand
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– Infinitely risk averse agents don’t invest in stocks anyway so that risk premium is not relevant for
their decision and, hence, shouldn’t be hedged.

• Conversely, share of bonds is U-shaped in risk aversion.

Hedging Volatility We can generalize this setting for time-varying volatility. For a log-normal setting
investment opportuinities are summarized by the maximum available sharpe ratio. Hence, there will be a
volatility hedging demand if the Sharpe ratio is going to move over time.

4 Intertempotal CAPM

Here we are going to appply intertemporal portfoloi choice theory to stidy the cross section of stock return. The
question that we are asking is what average stock returns or portfolios sorted on characteristics (such
as value) would make a long term investor to hold the market portfolio rather than overweighting
stocks with higher expected returns. For a short term investor or long term investor with log utility the
answer is CAPM: average excess stock returns over the risk free rate must be proportional to betas of stocks
with respect to the market. Merton extended CAPM to multiple periods to ICAPM and howed that variables
that predict future market returns are priced risk factors (I show this in the appendix).

First, let’s use the CS return approximation for the market return

r̃m,t+1 = (Et+1 − Et)
∞∑
j=0

ρj∆dt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrt+1+j = NCF,t+1 −NDR,t+1

For EZ investor the FOC from the previous section implies (remember that we are trying to make the investor
to hold the market, hence, his portfolio is the market =⇒ p ≡ m):

Etri,t+1 − rf,t+1 +
σ2
i

2
= γcovt(ri,t+1, rm,t+1) + (γ − 1)covt

ri,t+1, (Et+1 − Et)
∞∑
j=1

ρjrm,t+1+j


= γcovt(ri,t+1, NCF,t+1 −NDR,t+1) + (γ − 1)covt (ri,t+1, NDR,t+1)

= γcovt(ri,t+1, NCF,t+1)− covt (ri,t+1, NDR,t+1)

= γcovt(ri,t+1, NCF,t+1) + covt (ri,t+1,−NDR,t+1)

Now define the following betas with respect to each component

βi,CF,t =
covt(ri,t+1, NCF,t+1)

σ2
mt)

βi,DR,t =
covt(ri,t+1,−NDR,t+1)

σ2
mt)

=⇒ βimt = βi,CF,t + βi,DR,t

Hence, we can write the risk premium on asset i as

Etri,t+1 − rf,t+1 +
σ2
i

2
= βi,CF,t+1 · γσ2

mt + βi,DR,t+1 · σ2
mt (2)

The cash-flow beta has a risk price γ times higher than the price of risk of discount rate beta. This is because
long-term ivestors fear permanent decline in wealth drive by cash-flows than they fear temporary declines in
wealth due to higher discount rates. This is why cash-flow beta is called bad beta and discount rate beta is
called good beta. There is logic about the relative prices cash flow vs. discount rate covariances in bonds.
Suppose that we have a nominal bond that pays in two period. If you hold this bond to maturity you will for
sure get 1 no matter how the interest rates will change the value of the bond in 1 period. However, cash flow
news, for example, that the bond can default will influence both how much you can get in one period and in
two periods.
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Application to Growth Stocks Value anomaly shows that growth stocks have high betas but low returns.
In light of the two beta model this means that this beta should come disproportionately from discount rate beta
that has a low risk price. Therefore, growth stocks should do particularly well when future returns go down
(risk premium goes down). Hence, returns of growth stocks should predict return on the market and there is
some evidence of that. This allows the two-beta CAPM to explain the difference in returns for value and growth
stocks with a relatively high γ = 24.

Some Caveats

• Empirical tests of this model consider only unconditional implications of this model, kind of considering
an EZ investor holding a constant position in the market portfolio. However, this is only the case if the
risk premium on the market stays constant

• This model can’t explain the equity premium. As was discussed in chapter 5, most of the variation in
the aggregate market comes from discount rate news meaning that DR beta is a dominant in market beta
that is equal to 1: cash flow beta is only a small fraction of this unit beta. Hence, a large coefficient of
RRA is needed to rationalize the equity premium.

4.1 Three-Beta Model

As was discussed briefly in chapter 6, volatility affects the quality of investment opportuinities. Therefore, it
should affect intertemporal demand for a long-term investor. With time-varying volatility Campbell et al (2017)
show that the innovation to the EZ SDF can be written as

m̃t+1 = −γNCF,t+1 +NDT,t+1 +
1

2
NRISK,t+1

where NRISK,t+1 = (Et+1 − Et)
∞∑
j=1

ρjV art+j(mt+1+j + rt+1+j)

Thus NRISK,t+1 is news about future risk. In order to substitute out future SDF in NRISK,t+1, they make
additional assumption that market returns and conditional variances follows an VAR(1). After all these manip-
ulations they get that news about risk can be expressed as news about future variance of market returns

NRISK,t+1 = ω(Et+1 − Et)
∞∑
j=1

ρjσm,t+j = ωNV,t+1

When we put all the results together we get the following expression

Etri,t+1 − rf,t+1 +
σ2
i

2
= γσ2

mtβCF,t + σ2
mtβDR,t −

ωσ2
mt

2
Ni,V,t (3)

where ω is some function of γ so that γ is the only free parameter in this model.

Empirical Finding using VAR Estimation

• Find the growth stocks tend to outperform value stocks when long-term volatility forecasts increase (think
about the technology boom of late 90s and the global financial crisis). =⇒ growth stocks have positive
variance beta and since the risk of this covariance is negative in equation (3), they provide a hedge against
deteriorating investment opportuinities due to higher volatility.

• This model fits the value premium and some other cross-sectional patterns in stock returns with a lower
RRA of about 7.

• During the period studied, the aggregate stock market has a positive variance beta =⇒ need a large RRA
to fit the equity premium since the aggregate stock market is a good hedge against increasing volatility
=⇒ agents are willing to hold it even for large RRA.
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5 Term Structure of Risky Assets

Duration-Style Explanation One potential explanation for high discount beta of growth stocks is that they
have growing cash flows and, hence, derive a lot of their value from a distant future. Speaking in terminology
from fixed income growth stocks have high duration. Recall that large duration means high sensitivity to
movements in interest rates. Therefore, growth stocks are more sensitive to discount rate news than value
stocks.

More Direct Analysis of Term Structure of Risk Premium Work of van Binsbergen, Brandt and Koijen
(BBK 2012) construct a claim to dividends in the next 0.5 to 2 years and measures the properties of such short
claim. They found that these claims offer high return and high risky but their Sharpe ratio is higher than that
of the market. This suggests that short term claims may be more risky than long term claim =⇒ downward
sloping term structure of risk premium. Importantly they don’t look at buy and hold claims on dividends (that
are smooth since dividends are smooth) but rather at a strategy that holds these claim for one month and the
rebalances.

Term Structure of Risk Premium in Baseline Models Downward sloping risk premium is hard to
reconcile with standard consumption based models. Here we discuss several examples

• Power Utility and iid Consumption Growth. Consider a claim to time t + n consumption (con-
sumption strip). The return on this claim is

Vn−1,t+1

Vnt
=

Et+1

[
βn−1

(
Ct+n

Ct+1

)−γ
Ct+n

]
Et

[
βn
(
Ct+n

Ct

)−γ
Ct+n

] =

Et+1

[(
Ct+n

Ct+1

)1−γ
Ct+1

]
βEt

[(
Ct+n

Ct

)1−γ
Ct

]

=

Ct+1Et+1

[(
Ct+n

Ct+1

)1−γ]
CtβEt

[(
Ct+n

Ct

)1−γ] =

Ct+1Et+1

[(
Ct+2

Ct+1

)1−γ (
Ct+3

Ct+2

)1−γ
. . .

]
CtβEt

[(
Ct+1

Ct

)1−γ (
Ct+2

Ct+1

)1−γ
. . .

] =
Ct+1/Ct

βEt

[(
Ct+1

Ct

)1−γ]
where we were able to cancel all the terms since consumption growth is iid and, therefore:

Et+1

[(
Ct+j+1

Ct+j

)1−γ
]

= Et

[(
Ct+j+1

Ct+j

)1−γ
]

for j ≥ 1

Return to consumption strips
Vn−1,t+1

Vnt
is independent of n so that the term structure of risk premium is

flat

• Long-Run Risks Models There are two components to consider

1. Shocks that decrease future consumption growth increase SDF =⇒ raise interest rates =⇒ drive
bond prices up. Since consumption is dividend this also drives dividends down =⇒ stock prices fall

2. Shocks that increase volaility of consumption growth increase SDF =⇒ drive bond prices up. These
shocks increase precautionary savings motives =⇒ stock prices decrease

Both of these effects are more pronounced at longer horizons.

• Habit Model of Campbell Cochrane. In this model shocks that drive surplus down increase marginal
utility not only today but also in the future since consumption is expected to stay close to habit for a long
time. This makes longer maturity claim riskier.
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Response from Lettau and Wachter (2007,2011) They propose the following model

∆dt+1 = zt + σ + dεd,t+1

zt+1 = (1− φz)z̄ + φzzt + σzεz,t+1

xt+1 = (1− φx)x̄+ φxxt + σxεx,t+1

mt+1 = −rf −
x2t
2
− xtεd,t+1

that feature a reduced form essentially affine model for SDF that is modified to price risky assets. Notice that
the only shock that enter SDF is εd,t+1 – it is the only shock that is directly priced. Hence, by itself the decrease
in growth rate of dividends doesn’t affect marginal utility (as is the case in long-run risk model where shocks to
future consumption directly affect marginal utility). They calibrate this model to have a negative correlation
between innovations to dividend growth and contemporaneous dividends: εz,t+1 and εd,t+1. Thus, dividend
exhibit mean-reversion =⇒ long-term dividends are less risky than short term dividends.

6 Learning

Main Intuition When investor is uncertain about the process that governs returns (for example, he doesn’t
know the mean return) there is positive covariance between the realized return and expected future returns. This
happens because a positive return, for example, updates the mean return upwards. Alternatively, negative return
updates mean return downwards. This creates larger long-run volatility and generates negative intertemporal
hedging demand for the investor. The main problem that this can’t persists forever since over time the agent’s
estimate of the mean will be more and more precise so that each realization of return will not shift investor’s
belief that much. Hence, intertemporal hedging demand will decline in absolute value over time.

Deriving the Model Suppose that return is given by yt and it follows

yt+1 = µ+ σεt+1

where µ is unknown and is being learnt over time. First, introduce some notataion

• Prior for µ is p0(µ) = N (µ0, A0σ
2) where we scale the variance by σ2 just for analytical convenience.

• After an agent observes a stream of return y1, . . . , yt his posterior is

pt(µ) = p(µ|y1, . . . , yt) = N (µt, Atσ
2)

• When the investor forms his expectations about t + 1 he doesn’t know the true mean. Therefore, both
uncertainty about µ and the random noise εt+1 will enter into his decision. The one period variance is

vart(yt+1) = Atσ
2︸ ︷︷ ︸

uncertainty about return mean

+ σ2︸︷︷︸
noise in returns

and the mean is simple
Et[yy+1] = µt

Since yt+1 is normal, we can summarize equivalently say that the agent view the next period return as

yt+1 = µt +
√
At + 1σε̃t+1

Note that this modified yt+1 has the same conditional mean and variance as the true yt+1 derived above.

Now consider how the updating works with the notation that we described. Recall that in the normal
bayesian setting the posterior mean is the precision weighted average of the prior and the signal. The precision
of the prior is (Atσ

2)−1 and the precision of the signal is always σ−2. Hence, the posterior mean after observing
signal yt+1 is

µt+1 =
1

Atσ2µt + 1
σ2 yt+1

1
Atσ2 + 1

σ2

=
µt +Atyt+1

1 +At
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using the equivalent notation with ε̃t+1 we have

µt+1 =
µt +At(µt +

√
At + 1σε̃t+1)

1 +At
= µt +

Atσ√
At + 1

ε̃t+1

The posterior precision is

1

At+1σ2
=

1

Atσ2
+

1

σ2
=⇒ 1

At+1
=

1

At
+ 1 =⇒ At+1 =

(
1

At
+ 1

)−1
Implications for Long Term Variance First, consider how learning affect the variance of a long term K
period return from the prespective of the agent. Denote variance conditional on agent’s information set as
V ar∗t (·). Then1

V ar∗t (yt+1 + · · ·+ yt+K) = E∗t [V ar(yt+1 + · · ·+ yt+K |µ)] + V ar∗t (E[yt+1 + · · ·+ yt+K |µ]) [Use yt+j |µ ∼ iid]

= E∗t [σ2K] + V ar∗t (Kµ)

= σ2K +K2V ar∗t (µ)

= σ2K +K2Atσ
2

= σ2K(1 + +KAtσ) =⇒ V ar∗t (yt+1 + · · ·+ yt+K)

K
increases in K

Unlike in the model with iid return, uncertainty about the parameter values increases the long-run annualized
variance. This means that from the perspective of the agent risk increases with horizon and we will see shortly
that this creates intertemporal hedging motives

Learning and Intertemporal Hedging For the intertemporal hedging we need to calculate the covariance
between the return and revisions in future return, again, from the perspective of the agent

Cov∗t (yt+1, (E
∗
t+1 − E∗t )

∞∑
j=1

ρjyt+1+j)

= Cov∗t (µt +
√

1 +Atσε̃t+1, (E
∗
t+1 − E∗t )

∞∑
j=1

ρjµt+j +
√

1 +At+jσε̃t+1+j)

= Cov∗t (
√

1 +Atσε̃t+1, (E
∗
t+1 − E∗t )

∞∑
j=1

ρjµt+j)

= Cov∗t (
√

1 +Atσε̃t+1, (E
∗
t+1 − E∗t )

[
ρ(µt +

σAt√
1 +At

ε̃t+1) + ρ2(µt +
σAt√
1 +At

ε̃t+1 +
σAt√
1 +At

ε̃t+2) + . . .

]
)

= Cov∗t (
√

1 +Atσε̃t+1,

[
ρ

σAt√
1 +At

ε̃t+1 + ρ2
σAt√
1 +At

ε̃t+1 + . . .

]
)

= Cov∗t (
√

1 +Atσε̃t+1,
ρ

1− ρ
σAt√
1 +At

εt+1) =
ρ

1− ρ
σ2At > 0

This means that the agent has negative intertemporal hedging if his risk aversion γ > 1. However, the strength
of this effect goes to zero as time passes since At goes down as more signals are received.

1The law of total variance says V ar(Y |X1) = E[V ar(Y |X1, X2)|X1] + V ar(E[Y |X1, X2]|X1) and we assume that X1 is the
information set of the investor and X2 is the true µ. Hence, (X1, X2) is the infromation set of the investor augmented with the
knowledge of the true µ.
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